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The paper presents a modi�ed model reference adaptive control (M-MRAC) for multi-

input multi-output nonlinear dynamical systems with time varying parametric uncer-

tainties and bounded external disturbances. It uses a prediction model to rapidly

generate adaptive estimates of the system's uncertainties with adjustable errors that

converge to a small neighborhood of the origin. A su�cient condition is derived to

specify the region of attraction in the space of initialization errors, design parameters

and external commends. The approach is applied to thrust controlled multi-rotor air

vehicles operating in an urban environment. It is shown that the designed controller

can provide a good tracking of a given trajectory in the unknown urban wind �eld, as-

suming that the maximum thrust generated by the rotors is known. The performance

of the algorithms are demonstrated in simulations.

I. Introduction

Multi-rotor air vehicles are becoming increasingly popular for civilian operations such as package

delivery, inspection, security and disaster management due to their a�ordability and capability to
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operate in con�ned volumes (see for example [1, 7, 9, 14] and references therein). These vehicles have

a small size, light weight structure and limited power, which makes them vulnerable to disturbances,

especially when �ying in a complex urban wind �eld, which is hard to predict and needs to be handled

in �ight. In addition, some operational conditions may demand control signals beyond the vehicle's

physical limitations, which will result in performance degradations or even drive the vehicle into

instability. Therefore, input constraint adaptive control design is critical for safety and reliability

of these small UAV operations.

The adaptive control design for uncertain systems with input constraints has been a research

topic for vast amount of publications both from design and analysis perspective. Some earlier results

can be found in a review paper [3]. The main interest in control design of this type of systems is

to prevent the adaptation mechanism to lead the system to instability when the control input hits

the saturation limits. One way of addressing this issue is to modify the external command or the

reference model dynamics such that the generated control signal remains in the given limits. Pseudo

control hedging [6] and positive µ-modi�cation [11] are based on this approach.

Other approaches use neural networks based control [4, 8, 10, 15], adaptive model predictive

control [2], reference governors [12], adaptive anti-windup technique [5], adaptive backstepping

control [19, 21, 22], convex optimization of the quadratic retrospective cost function [20], just to

mention few of them. In these approaches designed controllers achieve bounded tracking in the

presence of parametric uncertainties and external disturbances under speci�c assumptions. In [8],

it is assumed that the open-loop plant is locally stable, and bounded tracking of closed-loop system

is ensured in local sense. In [2], it is assumed that nonlinearities are locally Lipschitz and the

uncertain parameters are in known compact set. In [12], a reference governor is designed to modify

the evolution of control signal to satisfy speci�ed constraints. In [5], an adaptive anti-windup design

is presented for single input systems in strict feedback form, and a piecewise linear approximation

network is used to estimate the uncertainties with known bounds. In [19], a smooth approximation

of the saturation function and Nussbaum gain based adaptive backstepping design is presented

to achieve bounded tracking of a smooth command for input-to-state stable nonlinear uncertain

systems in feedback form. In [20], the control signal limits are ensured by bounding the magnitude
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of retrospectively optimized input signal for discrete-time linear systems under a set of assumptions.

In [13], adaptive neural network backstepping control is designed for uncertain nonlinear systems in

strict-feedback form with asymmetric saturation and external disturbances by using Gaussian error

function-based continuously di�erentiable approximation of saturation and dynamic surface control

to achieve a semi-global bounded tracking of a smooth command. In [4], a nonlinear disturbance

observer and dynamic surface control based neural network backstepping is used for uncertain strict-

feedback nonlinear systems to guarantee ultimately bounded convergence of all closed-loop signals.

In [22] and [21], an auxiliary system combined with a command �lter is designed to deal with the

input saturation e�ect and achieve bounded tracking.

In this paper, we present an adaptive control method for input constraint multi-input multi-

output nonlinear dynamical systems with time varying parametric uncertainties and bounded exter-

nal disturbances. The method, which was �rst presented in [17], uses a prediction model to rapidly

generate adaptive estimates of the system's uncertainties. It is shown that the designed controller

requires no modi�cation or tuning to guarantee tracking of a given reference model inside a region in

the space of initialization errors, design parameters and external commends described by a su�cient

condition, which is derived based on the adaptive estimation bounds. The approach is applied to

control of thrust-limited multi-rotor air vehicles operating in an urban environment. It is shown

that the designed controller can provide a good tracking of a given trajectory in the unknown urban

wind �eld, assuming that the maximum thrust generated by the rotors is known. Veri�cation of the

presented algorithm is conducted using simulations.

II. Problem Statement

Let the desired behavior of a controlled system be represented by the reference model

ẋm(t) = Axm(t) +Br(t), xm(0) = xm0 (1)

where A ∈ Rn×n is a Hurwitz matrix, B ∈ Rn×q and r : R+ → Rq is a bounded and piecewise

continuous external command with a bounded derivative. Let the dynamics of the control system
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be given by

ẋ(t) = A0x(t) +B0 [u(t) +K0g(x(t)) + d(t)] , (2)

u̇(t) = s(u(t),x(t),v(t))

with x(0) = x0, where x ∈ Rn is the state of the system, g(x is known Lipschitz continuous

nonlinear function, u ∈ Rq is the actuator's output, which is assumed to be available form direct

measurements or form the model. For majority of control systems the actuator dynamics are fast

enough to be replaced by a static map

u(t) = h(x(t),v(t)) ,

where v is the actuator's input. In essence, this map resembles the input constraint for the controlled

system, which in many cases is just a saturation function (see for example [11] and references

therein). The system's uncertainties are represented by matrices A0 ∈ Rn×n and B0 ∈ Rn×q,

K0 ∈ Rq×p and the external disturbance d : R+ → Rq, which satis�es the conditions

‖d(t)‖L∞ ≤ d∗, ‖ḋ(t)‖L∞ ≤ d∗d.

We assume that the matching conditions are satis�ed, that is A0 = A+B0K for some unknown K

and B0 = BΛ for some unknown positive de�nite Λ, therefore the system (2) can be represented in

the following form

ẋ(t) = Ax(t) +Br(t) +BΛ [u(t) + Θf(x, r) + d(t)] , (3)

where we denote Θf(x, r) = Kx+K0g(x)− Λ−1r. Our approach permits to extend the problem

formulation to time varying uncertainties Λ(t) and Θ(t), which satisfy the conditions

‖Λ(t)‖L∞ ≤ λ∗, ‖Θ(t)‖L∞ ≤ ϑ∗

‖Λ̇(t)‖L∞ ≤ λ∗d, ‖Θ̇(t)‖L∞ ≤ ϑ∗d. (4)

The objective is to design actuator's input signal v(t) such that the system tracks the reference

model (1) in the presence of time varying uncertainties and input constraints, which is assumed to
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be a saturation function

ui(t) = hi(vi(t)) = sat(vi(t)) =


v∗i sign(vi), if |vi(t)| > v∗i

vi(t), if |vi(t)| ≤ v∗i

,

in each channel, where v∗i , (i = 1, . . . , q) is the maximum achievable value.

III. Prediction Model

To estimate the systems uncertainties we introduce the following prediction model

˙̂x(t) = Ax̂(t) +Br(t) +BΛ̂(t)[u(t) + Θ̂(t)f(x, r) + d̂(t)] + kx̃(t) (5)

with x̂(0) = x̂0, where x̃(t) = x(t)− x̂(t) is the prediction error, k > 0 is a design parameter, Λ̂(t),

Θ̂(t) and d̂(t) are the estimates of the unknown quantities. We notice that the prediction model

mimics the system's dynamics with uncertainties replaced with their estimates, assuming that the

actuators output is available. When the map u(t) = h(v(t)) is one-to-one, that is the function

h(v(t)) can be inverted, then the actuator's output can be directly set to

uc(t) = −Θ̂(t)f(x, r)− d̂(t) (6)

by designing the control signal v(t) as

v(t) = h−1 (uc(t)) . (7)

In this case, the prediction model reduces to the modi�ed reference model

˙̂x(t) = Ax̂(t) +Br(t) + kx̃(t) . (8)

This is the case of unconstrained M-MRAC with time variant uncertainties, which was studied in

[17].

When the function h(v(t)) is not invertible, as in the case of saturation function, there is a

discrepancy ∆u(t) = u(t) − v(t) between the achieved control signal u(t) and demanded control

signal v(t), and the prediction model is written as

˙̂x(t) = Ax̂(t) +Br(t) + kx̃(t) +BΛ̂(t)∆u(t) . (9)
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.

To complete the prediction model de�nition, we introduce the adaptive update laws for on-line

parameter estimates as

˙̂
Θ(t) = γ Pr

(
Θ̂(t), ỹ(t)f>(x, r)

)
˙̂
Λ(t) = γ Pr

(
Λ̂(t), ỹ(t)[u(t) + Θ̂(t)f(x, r) + d̂(t)]>

)
˙̂
d(t) = γ Pr

(
d̂(t), ỹ(t)

)
, (10)

where γ > 0 is the adaptation rate, ỹ(t) = B>P x̃(t), P = P> > 0 is the solution of the Lyapunov

equation A>P +PA = −Q for some Q = Q> > 0, and Pr (·, ·) denotes the projection operator [16].

IV. Prediction Error Bounds

In this section we obtain prediction error bounds, which are independent of the control design.

To this end, we derive the error dynamics by substantiating (5) from (2)

˙̃x(t) = (A− kI)x̃(t) +BΛ(t)[Θ̃(t)f(x, r) + d̃(t)]

+ BΛ̃(t)[u(t) + Θ̂(t)f(x, r) + d̂(t)] , (11)

where Θ̃(t) = Θ(t)− Θ̂(t), Λ̃(t) = Λ(t)− Λ̂(t) and d̃(t) = d(t)− d̂(t) are the parameter estimation

errors.

First of all, we notice that the projection operators in the adaptive laws (10) guarantee the

following inequalities

‖Θ̂(t)‖ ≤ ϑ∗, ‖Λ̂(t)‖ ≤ λ∗, ‖d̂(t)‖ ≤ d∗ ,

which imply that

‖Θ̃(t)‖ ≤ 2ϑ∗, ‖Λ̃(t)‖ ≤ 2λ∗, ‖d̃(t)‖ ≤ 2d∗ .

Therefore one can easily compute that

d̃
>

(t)Λ(t)d̃(t) + tr
(

Θ̃>(t)Λ(t)Θ̃(t) + Λ̃>(t)Λ̃(t)
)
≤ 4λ∗d∗2 + 4λ∗ϑ∗2 + 4λ∗2

∆
= c1 (12)

and

2tr

(
Θ̇>(t)Λ(t)Θ̃(t)

)
+ 2ḋ

>
(t)Λ(t)d̃(t) + d̃

>
(t)Λ̇(t)d̃(t) + tr

(
Θ̃>(t)Λ̇(t)Θ̃(t)

)
≤ 4λ∗ϑ∗ϑ∗d + 4λ∗d∗d∗d + 4λ∗dd

∗2 + 4λ∗dϑ
∗2 ∆

= c2 . (13)
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Next, it is shown that the prediction error x̃(t) satis�es the bound

‖x̃(t)‖ ≤

√
|V (0)− c

γ |
λmin(P )

e−kt +

√
c

γλmin(P )
, (14)

where c = c1 + c2
2k , and V (0) is the initial value of the quadratic function

V (t) = x̃>(t)P x̃(t) + γ−1d̃
>

(t)Λ(t)d̃(t) + γ−1tr
(

Θ̃>(t)Λ(t)Θ̃(t) + Λ̃>(t)Λ̃(t)
)
, (15)

and λmin(P ) denotes the minimum eigenvalue of P . To this end, we compute the derivative of V (t)

along the trajectories of the prediction error dynamics (11) and the adaptive laws (10), and arrive

the inequality

V̇ (t) ≤ −x̃>(t)Qx̃(t)− 2kx̃>(t)P x̃(t) + γ−1c2 . (16)

On the other hand, V (t) ≤ x̃>(t)P x̃>(t) + γ−1c1. Therefore,

V̇ (t) ≤ −2k[V (t)− γ−1c1] + γ−1c2 , (17)

integration of which results in

V (t) ≤
[
V (0)− c

γ

]
e−2kt +

c

γ
. (18)

Noticing that ‖x̃(t)‖2 ≤ V (t)/λmin(P ), we readily obtain

‖x̃(t)‖ ≤

√
1

λmin(P )

√[
V (0)− c

γ

]
e−2kt +

c

γ
, (19)

which results in (14) taking into account the inequality
√
a+ b ≤

√
a+
√
b for any a ≥ 0, b ≥ 0.

It can be observed that the e�ect of prediction model initialization error decays exponentially

with the rate k, which is assumed to be a large value for the fast adaptation. Therefore, we can set

x̂0 = x0, which reduces (14) to

‖x̃(t)‖ ≤
√

c

γλmin(P )
, (20)

V. Performance bounds

First we derive the performance bounds assuming that the system is known. In this case, the

control signal demand is given by the equation

v0(t) = −Θ(t)f(x, r)− d(t) , (21)
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which reduces the system into the reference model provided that |vi(t)| ≤ v∗i , (i = 1, . . . , q) for all

t ≥ 0. That is the system's state and the external command satisfy the inequality

‖ −Kx−K0g(x)− Λ−1r − d(t)|| ≤ v∗ , (22)

where v∗ =
√
qmaxi=1,...,q(v

∗
i ) (see [11] for details). In this case, the tracking error e(t) = x(t) −

xm(t) satis�es the exponentially stable dynamics

ė(t) = Ae(t) , (23)

the state transition matrix of which is bounded as ‖ exp(At)‖ ≤ γA exp(−λAt). Therefore, ‖e(t)‖ ≤

γA‖e(0)‖ for all t ≥ 0. Similarly, the reference model satis�es the bound

‖xm(t)‖ ≤ γA
(
‖xm(0)‖+ λ−1

A ||B‖r
∗) ∆

= x∗m,

where r∗ is the external command bound. Substituting x(t) = e(t) + xm(t) in (22) and taking

into account Lipschitz condition ‖g(x) − g(xm)‖ ≤ λg(‖e‖), we obtain a su�cient condition for

‖v0(t)‖ ≤ v∗ as

(‖K‖+ λg‖K0‖) ‖xm(t)‖+ ‖K0‖‖g(xm(t))‖+ γA (‖K‖+ λg‖K0‖) ‖e(0)‖+
‖r(t)‖
λ∗

+ d∗ ≤ v∗ ,(24)

The inequality (24) de�nes the region of attraction in terms of reference model state and initial-

ization error, external command and disturbance bounds. It depends on design (reference model)

parameters set by the user and on the bounds of unknown parameters K, K0,Λ, d, which are also

used to set the projection operator in the de�nition of adaptive laws (10). Therefore, given the

system's initial condition x(0) and the reference model initialization error e(0), for any external

command satisfying

(‖K‖+ λg‖K0‖) ‖xm(t)‖+ ‖K0‖‖g(xm(t))‖+
‖r(t)‖
λ∗

≤ v∗ − d∗ − γA (‖K‖+ λg‖K0‖) ‖e(0)‖ ,(25)

the system exponentially tracks the reference model with the control signal de�ned in (21), which

will never violate the saturation limits provided that the right hand side of (25) is positive.

We notice that, when the adaptive control signal

v(t) = −Θ̂(t)f(x, r)− d̂(t) , (26)
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takes on values inside the actuator limits, then u(t) = v(t) and prediction model (5) reduces to the

modi�ed reference model (see [17] for details)

˙̂x(t) = Ax̂(t) +Br(t) + kx̃(t) . (27)

Hence the following bound can be easily derived

‖x̂(t)− xm(t)‖ ≤ γA‖x̂(0)− xm(0)‖|+ γAk

λA

√
c

γλmin(P )
, (28)

which implies that x̂(t) is bounded, hence the uncertain system state x(t) remains bounded when

the adaptive control is applied. In this case, the tracking error satis�es

‖e(t)‖ ≤ ‖x̃(t)‖+ ‖x̂(t)− xm(t)‖ ≤ γA‖x̂(0)− xm(0)‖|+
(
γAk

λA
+ 1

)√
c

γλmin(P )
, (29)

To derive su�cient conditions for the adaptive control to satisfy ‖v(t)‖ ≤ v∗ for all t ≥ 0, we

estimate the control di�erence ṽ(t) = v0(t)−v(t) = −Θ̃(t)f(x, r)−d(t)+ d̂(t). Following the steps

from [17], it can be shown that ṽ(t) satis�es the bound

‖ũ(t)‖ ≤ β1e
−ν1t + β2γ

− 1
2 , (30)

where the positive constants ν1, β1 and β2 are are de�ned in [17] and depend on design parameters,

the unknown parameter bounds and the estimates initialization errors. Therefore, to ensure that

the adaptive control v(t) does not violate the saturation limits, we require that it satis�es the

conservative bound ‖v(t)‖ ≤ v∗ − β1 − β2
∆
= v̄. That is, given the system's initial condition x(0)

and the reference model initialization error e(0), for any external command satisfying

(‖K‖+ λg‖K0‖) ‖xm(t)‖+ ‖K0‖‖g(xm(t))‖+
‖r(t)‖
λ∗

≤ v̄ − d∗ − γA (‖K‖+ λg‖K0‖) ‖e(0)‖ ,(31)

the system tracks the reference model with an error satisfying the bound (29), provided that the

right hand side of (31) is positive. The following theorem summarizes the su�cient condition, under

which the tracking error satis�es the bound (29).

Theorem V.1 Consider the system (2), reference model (1), prediction model (5), adaptive control

(26) and the adaptive laws (10). If the external disturbance satis�es the condition v∗ − β1 − β2 −

d∗ − ρ1 > 0 for some ρ1 > 0, the reference model and the external command satisfy the condition

(‖K‖+ λg‖K0‖) ‖xm(t)‖+ ‖K0‖‖g(xm(t))‖+
‖r(t)‖
λ∗

≤ ρ1
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and the initial tracking error lies in the ball of a radius ρ2/γA, where

ρ2 (‖K‖+ λg‖K0‖) ≤ d∗ + ρ1,

then the system (2) will track the reference model (1) with a bounded error satisfying (29), and the

adaptive control (26) will satisfy the input constraint ‖v(t)‖ ≤ v∗.

VI. Drone's Dynamic Model

A. Equations of Motion

The dynamics of the multi-rotor vehicle's center of mass in the East-North-Up Earth (inertial)

frame (FE) are given by

ṙ(t) = v(t) (32)

mv̇(t) = RB/E(t)eB3 T (t) + fD(t) +mg ,

where r(t) = [x(t) y(t) z(t)]> is the position of the center of mass in FE , v(t) = [vx(t) vy(t) vz(t)]
>

is the inertial velocity, m is the mass, T (t) =
∑1=n
i=1 fi(t) is the total, where fi(t) is the thrust

generated by the i-th rotor at time t in the positive z-direction in FB frame (eB3 = [0 0 1]> is the

third unit vector of FB), RB/E(t) is the rotation matrix from the body frame FB (Forward-Left-Up)

to FE , fD(t) is the aerodynamic drag force and g = [0 0 − g]> is the gravity acceleration.

The vehicle's rotational dynamics about the center of mass are given in the frame FB as

ṘB/E(t) = RB/E(t)ω×(t) (33)

Jω̇(t) = −ω(t)× Jω(t) + Jmωm(t)ω̄(t) + τ (t) + τD(t) ,

where ω(t) = [p(t) q(t) r(t)]> is the angular rate of FB with respect to the inertial frame FE

expressed in FB , J = diag(J1, J2, J3) is the vehicle's inertia matrix (the body frame is aligned

with the principal axes of inertia), Jm is the rotor inertia about the axis of rotation (assuming

identical for all of them), ω̄(t) = [−q(t) p(t) 0]>, ωm(t) =
∑n
i=1(−1)iΩi(t), Ωi(t) is the i-th rotor

angular rate about its axis of rotation, τ (t) is the torque generated by the rotors, τD(t) is the

aerodynamic rotational drag torque.
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B. Atmospheric E�ects

The aerodynamic drag force is modeled in the body frame as fBD = [−cDxv
B
ax |v

B
ax | −

cDy
vBay |v

B
ay | − cDz

vBaz |v
B
az |]
>, where the drag coe�cients cDi

are constant for each axis i = x, y, z,

vBa (t) = vB(t) − wB(t) is the vehicle's relative to the air velocity expressed in the body frame,

and wB(t) is the wind inertial velocity expressed in the body frame, and is translated to the in-

ertial frame as fD = RB/Ef
B
D. The rotational drag torque is modeled in the body frame as

τBD = [−cτxωBax |ω
B
ax | − cτyω

B
ay |ω

B
ay | − cτzω

B
az |ω

B
az |]
>, where coe�cients cDi

are constant for each

axis i = x, y, z, and ωBa (t) = ω(t) −wB
ω (t) is the vehicle's relative to air angular rate expressed in

the body frame, which includes the air mass circulation rate (or vorticity) wB
ω (t) expressed in the

body frame. We refer interested reader to [18] for details.

VII. Multi-rotor Air Vehicle's Control

The objective of the multi-rotor air vehicle control is to design total thrust T (t) and control

torque τ (t) such that the vehicle's position and the yaw angle track the given trajectory rc(t)

and ψc(t) in the presence of vehicle's mass and inertia parametric uncertainties and atmospheric

disturbances.

First we design a position control algorithm assuming that the trajectory command is �ltered

through decoupled second order reference model in each direction

r̈m(t) = −2fmζmṙm(t)− f2
m[rm(t)− rc(t)] , (34)

where fm and ζm are the frequency and damping ration of the reference model. For this design,

we assume vehicle's mass and the atmospheric drag force, which also includes the wind linear

velocities, are unknown and that the control signals are the total thrust, roll and pitch angles,

which are constraint as 0 < Tmin ≤ T ≤ Tmax and −ϕ∗ ≤ φ, θ ≤ ϕ∗, where Tmin, Tmax and ϕ∗ are

given limits. We use only velocity dynamics for estimation purposes, which are written as

v̇(t) =
1

m
T (t) + sv(t) + g , (35)

where T = [Tx Ty Tz]
> = RB/E(t)eB3 T (t). The prediction model for velocity dynamics, which is
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used to estimate mass and the drag force, take the form

˙̂v(t) = −2fmζmv(t)− f2
m[r(t)− rc(t)] + λ[v(t)− v̂(t)] (36)

with the design of thrust vector as

T (t) = m̂(t)
[
−2fmζmv(t)− f2

m[r(t)− rc(t)]− ŝv(t)
] ∆

= m̂(t)f c(t) , (37)

where the parameter estimates are updated on-line according to adaptive laws

˙̂sv(t) = γ Pr (ŝv(t), ṽ(t)) (38)

˙̂m(t) = γ Pr
(
m̂(t), − ṽ>(t)f c(t)

)
.

The required total trust and Euler angle commands are obtained from (37) as

T (t) =
√
T 2
x (t) + T 2

y (t) + T 2
z (t) (39)

φc(t) = arctan2 (Tx(t) cos(ψ(t)) + Ty(t) sin(ψ(t)), Tz(t))

θc(t) = arctan2 (Tx(t) sin(ψ(t))− Ty(t) cos(ψ(t)), Tz(t)/ cos(φc(t))) ,

Now, we derive the control torque for the rotational dynamics (33) such that the Euler angles

φ(t), θ(t), ψ(t) track the reference signals φc(t), θc(t), ψc(t). Here we use time scale separation

based backstepping approach for kinematics and de�ne angular rates commands as

pc(t) = cφ [φc(t)− φ(t)]− cψ [ψc(t)− ψ(t)] sin(θ(t)) (40)

qc(t) = cθ [θc(t)− θ(t)] cos(φ(t)) + cψ [ψc(t)− ψ(t)] sin(φ(t)) cos(θ(t))

rc(t) = −cθ [θc(t)− θ(t)] sin(φ(t)) + cψ [ψc(t)− ψ(t)] cos(φ(t)) cos(θ(t)) ,

where cφ > 0, cθ > 0, cψ > 0 are design constants. The adaptive control torques required to track

the angular rate commands are de�ned using the prediction model

˙̂ω(t) = cω [ωc(t)− ω(t)] + λ [ω(t)− ω̂(t)] (41)

for the angular rate dynamics, which are written as

ω̇(t) = −J−1ω(t)× Jω(t) + Jmωm(t)J−1ω̄(t) + J−1τ (t) + sω(t) , (42)
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or component-wise

ṗ(t) = cp1q(t)r(t) + cp2q(t) ∗ ωm(t) + sp(t) +
1

J1
τ1(t) (43)

q̇(t) = cq1q(t)r(t) + cq2p(t) ∗ ωm(t) + sq(t) +
1

J2
τ2(t)

ṙ(t) = cr1q(t)r(t) + sr(t) +
1

J3
τ3(t) .

The resulting control torques are de�ned as

τ1(t) = Ĵ1(t) [cp [pc(t)− p(t)]− ĉp1(t)q(t)r(t)− ĉp2(t)q(t) ∗ ωm(t)− ŝp(t)]
∆
= Ĵ1(t)fpc(t) (44)

τ2(t) = Ĵ2(t) [cq [qc(t)− q(t)]− ĉq1(t)q(t)r(t)− ĉq2(t)p(t) ∗ ωm(t)− sq(t)]
∆
= Ĵ2(t)fqc(t)

τ3(t) = Ĵ3(t) [cq [rc(t)− r(t)]− ĉr1(t)q(t)r(t)− ŝr(t)]
∆
= Ĵ3(t)frc(t) ,

where the estimates of corresponding unknown quantities satisfy the adaptive laws

˙̂sω(t) = γ Pr (ŝω(t), ω̃(t)) (45)

˙̂
J(t) = γ Pr

(
Ĵ(t), − diag [fpc(t), fqc(t), frc(t)] ω̃(t)

)
˙̂cp1(t) = γ Pr (ĉp1(t), q(t)r(t)p̃(t))

˙̂cp2(t) = γ Pr (ĉp2(t), q(t)ωm(t)p̃(t))

˙̂cq1(t) = γ Pr (ĉq1(t), p(t)r(t)q̃(t))

˙̂cq2(t) = γ Pr (ĉq2(t), p(t)ωm(t)q̃(t))

˙̂cr1(t) = γ Pr (ĉq1(t), p(t)q(t)r̃(t)) .

VIII. Simulation Results

Using the dynamic model of DJI S1000 octocopter, we conducted MatLab simulations to

demonstrate the performance of M-MRAC in the presence of input constraints, unknown mass

and inertia parameters, and atmospheric wind. The simulation setup follows design steps of sec-

tion VII with constant position rc and sinusoidal yaw angle commands. For this simulations we

use the following parameters: m = 8 kg, J = diag(0.3245, 0.3245, 0.4616) kg.m2, Tmin = 5 N ,

Tmax = 200 N , ϕ∗ = 45 degrees. The wind components are set to wx(t) = 7.2 sin(1.5t), wy(t) =

7.2 sin(1.6t), wz(t) = 5.7 sin(1.7t), wp(t) = 0.7 sin(2.5t), wq(t) = 0.6 sin(2.4t), wr(t) = 0.5 sin(2.3t).
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Fig. 1 Reference trajectory tracking time history.

For the �rst simulation we choose reference model parameters as fm = 1, ζm = 0.8, gains for

the rate commands are set to 10, and for control torques to 20. The adaptive rate is set to γ = 1000

and estimation feedback gain to k =
√
γ. The reference models and the prediction models are

initialized at the system's initial conditions, the adaptive estimates are initialized at zero except for

m̂(0), which is set to 5. For the chosen parameters, the set point command rc = [4 7 18]> satis�es

the su�cient condition (31).

Fig. 1 displays the reference trajectory tracking performance of the presented M-MRAC design.

A very good tracking can be observed despite the severe disturbance. It can be also observed from

Figs. 2 and 3 that the total thrust, roll and pitch angle commands do not exceed the set bounds.

Fig. 4 displays the velocity prediction and reference command tracking performance. It can be

observed that very close prediction is generated by the presented adaptive algorithm. Although it

is not a primary objective here, but a good reference velocity tracking can be observed as well.

The vehicle's orientation control performance is displayed in Figs. 3 and 5. Here, a very good

tracking can be observed as well. Fig. 5 also displays the a very close angular rate prediction by
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Fig. 2 Total thrust time history.

the presented adaptive algorithm.

In the next simulation, we set the initial condition for the reference model as rm(0) = r(0) −

[5 5 5]>, and the initial condition for the prediction model model as v̂(0) = v(0)− [1.5 1.5 1.5]>,

which still satisfy the su�cient condition (31). It can be observed from Figs. 6, 7 and 8 that the

initialization error has little e�ect on the performance.

In the �nal set of simulations we speedup the reference model by setting its natural frequency

to fm = 1.4, which causes the reference state to violate the su�cient condition (31). It can be seen

from Figs. 9 and 10 that the control signals T (t), φc(t) and θc(t) hit the saturation bounds, which

results in instability displayed in Fig. 11

IX. Conclusion

We have presented modi�ed model reference adaptive control (M-MRAC) performance for input

constraint multi-input multi-output nonlinear dynamical systems with parametric uncertainties and

bounded external disturbances. A su�cient condition has been derived, which speci�cities the

region of attraction in the space of initialization errors, design parameters and external commends.
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Fig. 3 Euler angles reference command tracking time history.

The approach has been applied to thrust controlled multi-rotor air vehicles operating in the urban

environment. It is shown that the designed controller can provide a good tracking of a given

trajectory in the unknown urban wind �eld, assuming that the maximum thrust generated by

rotors is known. The algorithms have been veri�ed using simulations.
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